Structure-Activity Relationships of Methoctramine-Related Polyamines as Muscular Nicotinic Receptor Noncompetitive Antagonists. 3. ${ }^{1}$ Effect of Inserting the Tetraamine Backbone into a Macrocyclic Structure

Maria L. Bolognesi, ${ }^{\dagger}$ M. Gabriele Bixel ${ }^{\ddagger}$ Gabriella Marucci, ${ }^{\S}$ Manuela Bartolini, ${ }^{\dagger}$ Michael Krauss, \ddagger Piero Angeli, ${ }^{\S}$ Alessandra Antonello, ${ }^{\dagger}$ Michela Rosini, ${ }^{\dagger}$ Vincenzo Tumiatti, ${ }^{\dagger}$ Ferdinand Hucho, \ddagger and Carlo Melchiorre*, \dagger
Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Institut für Chemie-Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany, and Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy

Received J anuary 29, 2002

Abstract

The present article expands on the study of another aspect of structure-activity relationships of the polymethylene tetraamines, namely, the effect of inserting the tetraamine backbone into a macrocyclic structure. To this end, compounds 8-12 were designed by linking the two terminal nitrogen atoms of prototype methoctramine $\mathbf{2}$ to an aryl moiety. Alternatively, $\mathbf{2}$ was first modified to achieve compounds 6 and 7, which in turn were cyclized by linking the two terminal primary amine functions to a polyphenyl spacer, affording 13-20. All the compounds were tested on muscle-typenAChRs and most of them as well on AChE. F urthermore, selected compounds were tested also on peripheral M_{2} and $M_{3} m A C h R s$. All these cydic derivatives, like prototypes, were potent noncompetitive antagonists at both frog and Torpedo nAChRs, suggesting that polyamines do not need to be linear or in extended conformation to optimally interact with the nicotinic channel; rather, they may bind in a U-shaped conformation. Relative to muscarinic activity, macrocyclic compounds 10, 13, 14, and 20, in contrast with the profile displayed by 2, were almost devoid of affinity. It is derived that an aryl spacer is detrimental to the interaction of polyamines with mAChRs. Finally, all the diamine diamides investigated in this study were much less potent in inhibiting AChE activity than prototype 3, suggesting that a macrocydic structure may not be suitable for AChE inhibition.

Introduction

We have demonstrated that polymethylene tetraamines are a versatile tool for the characterization of different receptor systems. ${ }^{2-6}$ For example, benextramine ${ }^{7}$ (1, Figure 1), the prototype tetraamine disulfide for irreversible antagonism of α_{1}-adrenoreceptors, was shown to antagonize several receptors, including nicotinic receptors (nAChRs), ${ }^{8}$ muscarinic receptors (mAChRs), ${ }^{2,5}$ neuropeptide Y receptors, ${ }^{9}$ and acetylcholinesterase (AChE). ${ }^{10}$ The pharmacological profile of $\mathbf{1}$ was taken as a starting point to develop the universal template approach to the design of polyamines as selective ligands for different biological targets.4,6,10 Structural modifications performed on the structure of $\mathbf{1}$ led to the discovery of methoctramine ${ }^{11}$ (2, Figure 1), a prototype tetraamine for antagonism of mAChRs, and of caproctamine (3, Table 1), ${ }^{10}$ a prototype diamine diamide for noncompetitive inhibition of AChE. More recently, we have modified the structure of 2 to produce polyamines that have high affinity and selectivity for muscle-type nAChRs. 8,12 Following these structural modifications, a most intriguing finding was that the affinity of polyamines for muscle-type nAChRs is dependent on the type and length of the spacer between the nitrogen atoms and on the substituents on the terminal amine functions as well. The higher homologue

[^0]

Figure 1. Chemical structure of benextramine ($1, X=S$), methoctramine $\left[\mathbf{2}, \mathrm{X}=\left(\mathrm{CH}_{2}\right)_{2}\right]$, and homol ogue $\mathbf{4}\left[\mathrm{X}=\left(\mathrm{CH}_{2}\right)_{4}\right]$.

4 (Figure 1) of $\mathbf{2}$ was significantly more potent at the frog rectus $n A C h R$ than 2, while retaining, however, most of the affinity of $\mathbf{2}$ for M_{2} and M_{3} mAChRs. ${ }^{8}$ The replacement of the flexible 1,12-diaminododecane unit of 4 with a ($4^{\prime \prime}$-aminomethyl-[1, $\left.1^{\prime} ; 4^{\prime}, 1^{\prime \prime}\right]$ terphenyl-4-yl)methylamine fragment led to 5 (Table 1), which displayed most of the affinity of $\mathbf{4}$ for nAChRs but lost almost completely the affinity for both M_{2} and M_{3} mAChRs. Thus, it was demonstrated that flexibility of the spacer between the inner nitrogen atoms of tetraamines is an important determinant of potency with respect to both nAChRs and mAChRs. Consequently, the selectivity for muscle-type nAChRs relative to mAChRs could be achieved by replacing a flexible spacer with a rigid one. Following this observation, we advanced that the inner nitrogen atoms of 5 are unlikely to be less than $15 \AA$ apart because, owing to the rigidity of the terphenyl moiety, the only possibility to alter the distance between the two inner amine functions is restricted to the rotation along the axis of the two bonds between the inner nitrogen atoms and the 4",4-carbon atoms. It follows that this distance may be important for the interaction with two anionic sites of the channel

Table 1. Antagonist Affinities, Expressed as pl $C_{50}, K_{\text {app }}$, or $p K_{B}$ Values, at Nicotinic Acetylcholine Receptors ($n A C h R s$) of the Isolated Frog Rectus Abdominis Muscle (FRA) and Torpedo and at Muscarinic Acetylcholine Receptors (mAChRs) of Isolated Guinea Pig Left Atrium $\left(\mathrm{M}_{2}\right)$ and Longitudinal Ileum (M_{3}), Respectively, and Inhibitory Activity, Expressed as $\mathrm{pl} \mathrm{C}_{50}$ Values, on Acetylcholinesterase (AChE) from Human Erythrocytes of the Compounds Studied

compd ${ }^{\text {a }}$	n	X	R	mAChR		AChE plC_{50}	$n A C h R$	
				$\left.\mathrm{pK} \mathrm{B}^{(} \mathrm{M}_{2}\right)$	$\mathrm{pK}_{\mathrm{B}}\left(\mathrm{M}_{3}\right)$		pl_{50} (FRA)	$\mathrm{pK}_{\text {app }}$ (Torpedo)
2	1	CH_{2}	H	$7.91 \pm 0.03^{\text {b }}$	$6.14 \pm 0.06^{\text {b }}$	5.27 ± 0.03^{c}	$5.93 \pm 0.03^{\text {b }}$	$6.21 \pm 0.10^{\text {b }}$
3	1	CO	CH_{3}	$6.39 \pm 0.23{ }^{\text {c }}$	$5.55 \pm 0.12^{\text {c }}$	$6.77 \pm 0.01^{\text {c }}$		4.99 ± 0.02
4	5	CH_{2}	H	$7.35 \pm 0.09{ }^{\text {b }}$	5.98 ± 0.07^{b}		$7.02 \pm 0.04{ }^{\text {b }}$	$5.66 \pm 0.05^{\text {b }}$
5				$<5^{d}$	$<5^{d}$		$6.30 \pm 0.02^{\mathrm{b}}$	$6.35 \pm 0.06^{\text {b }}$
6		CO				4.48 ± 0.01	6.80 ± 0.01	6.46 ± 0.02
7		CH_{2}					6.48 ± 0.01	6.40 ± 0.01
8	1	CH_{2}					5.46 ± 0.03	6.43 ± 0.06
9	2	CH_{2}					6.35 ± 0.01	6.35 ± 0.01
10				$<5^{\text {d }}$	$<5^{\text {d }}$		6.64 ± 0.01	6.21 ± 0.01
11	2	CO				4.27 ± 0.08	6.28 ± 0.01	5.10 ± 0.01
12							5.37 ± 0.02	<4 e
13	1	CO	H	$<5^{\text {d }}$	$<5^{\text {d }}$	5.85 ± 0.03	6.77 ± 0.03	6.47 ± 0.01
14	2	CO	H	$<5^{\text {d }}$	$<5^{\text {d }}$	5.47 ± 0.04	6.23 ± 0.02	6.64 ± 0.03
15		CO				5.21 ± 0.02	6.62 ± 0.02	6.70 ± 0.01
16	3	CO	H			4.80 ± 0.03		6.03 ± 0.01
17	2	CO	CH_{3}			3.98 ± 0.04	6.15 ± 0.01	6.01 ± 0.02
18	1	CH_{2}	H				6.49 ± 0.02	6.01 ± 0.01
19	2	CH_{2}	H				5.92 ± 0.03	5.48 ± 0.02
20		CH_{2}		<5	<5		6.72 ± 0.01	6.26 ± 0.01
TPMP ${ }^{+f}$							$6.05 \pm 0.09{ }^{\text {b }}$	$5.70 \pm 0.12^{\text {b }}$

${ }^{\text {a }} \mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}, \mathbf{1 2}, 18-20$, tetrahydrochlorides; 3, 11, 13-17, dihydrochlorides; 6, dioxalate; 9, 10, tetraoxalates. ${ }^{\text {b }}$ Data from ref 12.
${ }^{c}$ Data from ref 10 . ${ }^{\mathrm{d}} \mathrm{N}$ ot active up to a concentration of $5 \mu \mathrm{M}$. e N ot able to displace bound ethidium up to a concentration of $100 \mu \mathrm{M}$. ${ }^{\mathrm{f}}$ Triphenylmethylphosphonium bromide.
located most likely at a distance comparable with that between the inner nitrogen atoms of 5 .

The present article expands on the study of another aspect of structure-activity relationships of prototype 2, namely, the effect of inserting the tetraamine backbone into a macrocyclic structure. The rational e for this structural modification stands on the need to gain information on the active conformation of polyamines in the interaction with muscletype nAChRs. Photolabile compounds have been used to gain insight into the mode of interaction of polymethylene tetraamines with nAChRs. As a most interesting finding, we observed that a radioactive photolabile compound, bearing two identical azido groups on the terminal N -aryl-substituted nitrogen atoms, photolabeled nAChR α-subunits, suggesting that each of the two nAChRs α-subunits interacts with one of the two terminal N -aryl groups of this compound, resulting in a U-shaped conformation when bound to the lumen of the receptor ion channel. ${ }^{12}$ Thus, a cydic structure should give an answer as to whether a tetraamine interacts with the receptor in an extended or in a folded (U-shaped) conformation. To this
end, we designed macrocyclic polyamines 8-20. Compounds 8-12 were obtained by linking the two terminal nitrogen atoms of $\mathbf{2}$ to an aryl moiety. Alternatively, to link to each other the two terminal nitrogen atoms to an octamethylene spacer and the two inner nitrogen atoms to an aryl moiety, prototype $\mathbf{2}$ was first modified to achieve compounds 6 and $\mathbf{7}$, which in turn were cydized by linking the two terminal primary amine functions to an aryl spacer, affording 13-20. The design strategy for our compounds is shown in Figure 2.
All of the compounds synthesized in this study were tested on muscle-type nAChRs, and most of them were tested on AChE as well. Furthermore, selected compounds were tested also on peripheral M_{2} and M_{3} mAChRs.

Chemistry

All the newly synthesized compounds were characterized by IR, ${ }^{1} \mathrm{H}$ NMR, mass spectra, and elemental analysis.
The synthesis of diamine diamide $\mathbf{6}$ was accomplished using our previously established procedures, as shown

II $(6,7)$

III (8-12)
Figure 2. Design strategy for the synthesis of macrocyclic polyamines of the present investigation. First, methoctramine (2, structure I, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{X}=\mathrm{CH}_{2}$) has been modified to achieve structure II by moving the two methoxybenzyl groups from the terminal to the inner nitrogen atoms (a). Second, the outer nitrogen atoms of structures I and II have been linked by a suitable spacer to give structures III (b) and IV (c), respectively.

Scheme 1^{a}

$$
\begin{aligned}
& \text { 22: } \mathrm{R}=\mathrm{BOC} \\
& \text { 6: } \mathrm{R}=\mathrm{H}
\end{aligned} \longrightarrow \mathrm{CF}_{3} \mathrm{COOH}
$$

$\mathrm{a} \mathrm{Boc}=\mathrm{Me}_{3} \mathrm{COCO}-$.
in Scheme 1. Thus, N-(tert-butoxycarbonyl)-6-aminocaproic acid was amidated with diamine 21, synthesized in turn from 1,8-diaminooctane and 2-methoxybenzaldehyde to give 22. Removal of the N -tert-butoxycarbonyl groups of $\mathbf{2 2}$ was achieved by acidic hydrolysis in $\mathrm{CF}_{3^{-}}$ COOH .

Reduction of the carbonyl functions of diamine diamide 6 to obtain tetraamine 7 was next attempted. Unfortunately, this transformation, using different reducing agents, led to a complex mixture and to significant amounts of decomposition products. Thus,
another synthetic pathway to achieve $\mathbf{7}$ was then followed (Scheme 2). Alkylation of 21 with 24, obtained in two steps starting from 6-amino-1-hexanol, afforded 25. Removal of the protecting groups of $\mathbf{2 5}$ by hydrolysis with 6 N HCl gave 7.

All the polyazamacrocycles listed in Table 1 were obtained in good yields (37-65\%), following a one-step synthetic method that includes a first [1+1] condensation of theterminal primary amino groups of polyamines with the corresponding dial dehydes, followed by hydrogenation of the intermediate Schiff bases with NaBH_{4}.

Scheme $\mathbf{2 a}^{\text {a }}$

${ }^{\mathrm{a}} \mathrm{Boc}=\mathrm{Me}_{3} \mathrm{COCO}-$.
Dropwise slow addition of 1 equiv of dialdehydes 28$30^{13,14}$ to a dilute solution containing 1 equiv of polyamine 27^{15} in the presence of NaBH_{4} afforded intermediate macrocycles 31, 12, and 32, which were subsequently converted to the desired macrocydes 8-10 through reductive amination of the secondary amine functions with 2-methoxybenzal dehyde (Scheme 3).

Similarly, cyclization of diamine diamide $\mathbf{2 6}^{15}$ with 29 provided the required precursor 33, which was alkylated with 2-methoxybenzyl chloride ${ }^{16}$ to give the macrocycle 11, as illustrated in Scheme 4.

Under the same cyclization conditions, reaction of polyamines 6 and 7 with the different dial dehydes 28$\mathbf{3 0}$ or $\mathbf{3 4}{ }^{17}$ provided the final compounds $\mathbf{1 3 - 1 6}$ (Scheme 5) and 18-20 (Scheme 6). Alkylation of $\mathbf{1 4}$ with formaldehyde and formic acid afforded the N,N'-dimethyl macrocycle $\mathbf{1 7}$ (Scheme 5). While compounds 28-30 are soluble in EtOH, p-terphenyl-4,4"-di carboxyaldehyde 34 is highly insoluble, and the use of a different solvent rather than an alcohol then became necessary, affecting the outcome of cyclization, as indi cated by the low yield of $\mathbf{1 6}$ (22\%), which was synthesized using CHCl_{3} as cosolvent.

Biology

The effects of compounds $\mathbf{1 0}, \mathbf{1 3}, \mathbf{1 4}$, and $\mathbf{2 0}$ on M_{2} mAChRs were determined using guinea pig left atria electrically stimulated at $1 \mathrm{~Hz} .{ }^{18,19}$ The guinea pig ileum longitudinal muscle was used to study their effects on M_{3} mAChRs. ${ }^{18,19}$ In both cases the agonist was arecaidine propargyl ester (APE). The biological data are expressed as the negative logarithm of the apparent dissociation constants $\left(\mathrm{pK}_{\mathrm{B}}\right) .{ }^{20}$

The inhibitory activity against AChE of compounds 6, 11, and 13-17 was studied using the method of Ellman et al. ${ }^{21}$ The inhibitory activity was expressed as plC_{50} values that represent the concentration of inhibitor required to decrease enzyme activity by 50\%.

The effects of compounds 6-15 and 17-20 on muscletype nAChRs were studied using the frog rectus abdominis muscle and carbachol-induced contractions as the measured parameter. ${ }^{22}$ The results are expressed as plC_{50} values, i.e., the negative logarithm of the concentrations required to inhibit the maximal response to carbachol by 50\%.

Apparent binding affinities ($\mathrm{pK} \mathrm{K}_{\text {app }}$) of compounds 6-20 at the noncompetitive binding site of Torpedo
nAChRs were determined by using the fluorescent noncompetitive inhibitor ethidium in a displacement assay. ${ }^{23}$

Methoctramine(2), caproctamine (3), anal ogues 4 and 5, and triphenylmethyl phosphonium bromide (TPMP+) were used as controls, and their $\mathrm{pl}_{50}, \mathrm{pK}_{\text {app }}$, and pK_{B} values were within theerror of previous determinations.

Results and Discussion

The newly synthesized compounds 6-20 were assayed on nAChRs of isolated frog rectus abdominis muscle and Torpedo. F urthermore, selected compounds were evaluated also for their muscarinic M_{2} and M_{3} antagonist potency (10, 13, 14, 20) and for their inhibition of AChE from human erythrocytes ($\mathbf{6}, \mathbf{1 1}, 13-17$). Polyamines 2-5 and TPMP ${ }^{+}$were used as standards for a comparison. The results are summarized in Table 1.

It was observed that over the concentration range investigated all of the compounds were noncompetitive antagonists of muscle-type nAChRs. The maximum response to carbachol was reduced, and the magnitude of this reduction was dependent on the concentration of antagonist. In all cases, washing the muscle in drugfree saline reversed the antagonism. To determine the binding affinities of the various polyamine derivatives at nAChRs, we have used the well-characterized luminal noncompetitive inhibitor ethidium in a fluorescent displacement assay. ${ }^{23}$ Ethidium, when bound to the high-affinity site for noncompetitive antagonists of the nAChR in its desensitized state, shows an intensive emission maximum at 590 nm upon excitation at 480 $\mathrm{nm} .{ }^{23,24}$ Since bound ethidium is displaceable by wellcharacterized luminal noncompetitive antagonists, ethidium can be used as a reference fluorophor to characterize new ligands of this binding site. It turned out that all of the polyamines investigated in this study, with the exception of compound 12, compete with bound ethidium, indicating that these compounds also overlap with the high-affinity binding site for noncompetitive antagonists. This observation is in agreement with the noncompetitive mechanism of action observed at the frog rectus muscle nAChR.

Interestingly, analysis of the results reported in Table 1 reveals that the plC_{50} values obtained at frog rectus nAChRs are comparable with $\mathrm{pK}_{\text {app }}$ values calculated at Torpedo nAChRs because the difference was within $\pm 0.5 \log$ units with the exception of 4, 8, 11, and 12, whose pl_{50} and $\mathrm{pK}_{\text {app }}$ values differed to a larger extent. However, the observed discrepancy between pl_{50} and $\mathrm{pK}_{\text {app }}$ values is not surprising because it was already noticed with noncyclic polyamines. We argued that the different potencies displayed by some compounds at the frog rectus relative to the Torpedo nAChR might be the result of subtle differences in the mode of interaction of polyamines with the two receptors, owing to structural differences in their ion channel, or simply of a different bi oavailability of the compounds at the receptor site. ${ }^{12}$

Taking 2 and 3 as reference compounds, it can be observed how their potency at nAChRs, mAChRs, and AChE can be modified by introducing modifications into their structure.

Moving the two 2-methoxybenzyl groups from the two terminal nitrogen atoms to the inner nitrogen atoms of

Scheme 3

$\mathbf{2}$ afforded polyamines $\mathbf{6}$ and $\mathbf{7}$. These compounds were more potent than prototype $\mathbf{2}$ at both frog and Torpedo nAChRs while being equipotent to each other at Torpedo nAChRs, and diamine diamide $\mathbf{6}$ was more potent than the corresponding tetraamine $\mathbf{7}$ at frog nAChRs.

Cyclization of $\mathbf{6}$ and $\mathbf{7}$ by linking together the two terminal amine functions to an aryl spacer gave 1320. All these cyclic compounds were potent noncompetitive antagonists at both frog and Torpedo nAChRs, suggesting that pol yamines do not need to be linear or in extended conformation to optimally interact with the nAChR; rather, they bind in a U-shaped conformation as hypothesized earlier. ${ }^{12}$ Analysis of the results reveals that diamine diamides $\mathbf{1 3 - 1 5}$ were more potent than or as active as the corresponding tetraamines 18-20 at nAChRs, in line with the results observed for diamine diamide $\mathbf{6}$ and the corresponding tetraamine 7. Interestingly, these cydic compounds displayed an affinity
for nAChRs that was comparable to that of open prototypes 6 and 7. N-Methylation of the two amide functions did not improve the affinity for nAChRs because $\mathbf{1 4}$ was more potent than the corresponding $\mathrm{N}, \mathrm{N}^{\prime}$-dimethyl analogue 17 at both frog and Torpedo nAChRs. A di-p-tolylmethane spacer, as in $\mathbf{1 5}$ and 20, appears to confer optimum interaction with the nAChR, while a longer spacer, as in 16, caused a significant decrease in affinity at Torpedo nAChRs.

Cyclization of the $\mathrm{N}, \mathrm{N}^{\prime}$-dimethyl analogue of prototype $\mathbf{2}$ or of prototype $\mathbf{3}$ by linking the two terminal amine functions to an aryl spacer gave macrocyclic polyamines 8-11. Again, these compounds displayed affinity for nAChRs that was higher or comparable to that exhibited by prototypes $\mathbf{2}$ and $\mathbf{3}$. However, in this case, diamine diamide $\mathbf{1 1}$ was not more potent than the corresponding tetraamine $\mathbf{9}$. This finding suggests that the two sets of compounds, that is, 8-11 and 13-20,

Scheme 4

may interact differently with the nAChR. Compound 10, bearing a di-p-tolylmethane spacer, was more potent than both 8 and 9 at frog nAChRs, in line with the results observed for 15 and 20 relative to 13, 14, 18, and 19. However, 10 was slightly less potent than 8 and 9 at Torpedo nAChR. The markedly lower activity of 12 relative to the corresponding 2-methoxybenzylbearing analogue 9 suggests clearly that the 2-methoxybenzyl group had a relevant rolein receptor binding mechanism.

Prototype 2 was a potent and selective M_{2} mAChR antagonist relative to $\mathrm{M}_{3} \mathrm{mAChRs}$, muscle-type nAChRs, and AChE. In contrast, thehigher homologue 4 had high affinity for frog nAChRs that was only slightly lower than the affinity for $\mathrm{M}_{2} \mathrm{mAChRs}$, whereas analogue 5 displayed significant antagonism at nAChRs while being almost devoid of affinity, at least up to 5 mM concentration, for M_{2} and $\mathrm{M}_{3} \mathrm{mAChRs}$. It is derived that an aryl spacer is detrimental to the interaction of polyamines with mAChRs. This observation was confirmed by the results obtained with cyclic compounds $\mathbf{1 0}, \mathbf{1 3}, \mathbf{1 4}$, and 20 that were, like 5, devoid of affinity, up to $5 \mu \mathrm{M}$ concentration, for M_{2} and M_{3} mAChRs.

Prototype 3, which bears two amide functions, displayed higher affinity for AChE relative to mAChRs and Torpedo nAChRs. F or this reason, we tested at AChE all diamine diamides synthesized in the present study. It turned out that all diamine diamides investigated, unlike 3, were much less potent in inhibiting AChE activity than muscle-type nAChRs, suggesting that a cyclic structure may not be suitable for AChE inhibition.

In conclusion, we have demonstrated that inserting the tetraamine or the diamine diamide backbone of $\mathbf{2}$ and 3, respectively, into a cyclic structure did not negatively affect affinity for muscle-type nAChRs because the newly synthesized polyamines were more potent than or as active as the prototypes, confirming our previous observation that a tetraamine is unlikely to interact with the receptor in an extended conformation. It is derived that the active conformation of polyamines may be a folded one.

Scheme 5

Experimental Section

Chemistry. Melting points were taken in glass capillary tubes on a Büchi SMP-20 apparatus and are uncorrected. IR, MALDI-TOF-MS, and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Perkin-Elmer 297, Bruker Biflex III, and Varian VXR 300 instruments, respectively. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS), and spin multiplicities are given as s (singlet), br s (broad singlet), d (doublet), t (triplet), or m (multiplet). Although the IR spectra data are not induded (because of the lack of unusual features), they were obtained for all compounds reported and were consistent with the assigned structures. The elemental compositions of the compounds agreed to within $\pm 0.4 \%$ of the calculated value. When the elemental anal ysis is not included, crude compounds were used in the next step without further purification. Chromatographic separations were performed on silica gel columns by flash (Kieselgel 40, 0.040-0.063 mm; Merck) or gravity column (Kieselgel 60, 0.063-0.200 mm; Merck) chromatography. Compounds were named following IUPAC rules as applied by Beilstein-I nstitut AutoN om (version

Scheme 6

2.1), a PC integrated software package for systematic names in organic chemistry with the exception of compound 16, which was named by applying ACD/NAME (Advanced Chemistry Development, Inc.).

N,N'-Bis(2-methoxybenzyl)octane-1,8-diamine Dihydrochloride (21). A solution of 1,8-diaminooctane ($3.6 \mathrm{~g}, 25.0$ mmol) and 2-methoxybenzaldehyde ($7.49 \mathrm{~g}, 55.0 \mathrm{mmol}$) in toluene (100 mL) was refluxed, and the water formed was continuously removed for 3 h . The cooled mixture was filtered and the filtrate evaporated to give the corresponding Schiff base that was dissolved in EtOH (100 mL) and treated with $\mathrm{NaBH}_{4}(2.08 \mathrm{~g}, 55.0 \mathrm{mmol})$. The mixture was stirred at room temperature for 12 h , cautiously acidified with 6 N HCl , made basic with 2 N NaOH , and finally extracted with chloroform ($3 \times 50 \mathrm{~mL}$). Removal of dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ solvents afforded, in quantitative yield, $\mathbf{2 1}$ as the free base that was converted into the dihydrochloride salt: $\mathrm{mp} 200-205^{\circ} \mathrm{C}$ (from $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}) $\delta 1.28-1.49$ (m, 12), 1.75 (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.58 (t, 4), 3.78 (s, 4), 3.84 (s, 6), 6.846.95 ($\mathrm{m}, 4$), 7.20-7.26 (m, 4).
\{5-[\{8-[(6-tert-Butoxycarbonylaminohexanoyl)(2-methoxybenzyl)ami no]octyl\}(2-methoxybenzyl)carbamoyl]pentyl\}carbamic Acid tert-Butyl Ester (22). Ethyl chlorocarbonate ($2.63 \mathrm{~mL}, 27.5 \mathrm{mmol}$) in dry dioxane (5 mL) was added dropwise to a stirred and cooled ($5^{\circ} \mathrm{C}$) solution of N -(tert-butoxycarbonyl)-6-aminocaproic acid ($6.35 \mathrm{~g}, 27.5 \mathrm{mmol}$) and triethylamine ($3.83 \mathrm{~mL}, 27.5 \mathrm{mmol}$) in dioxane (120 mL), fol lowed after standing for 30 min by the addition of $\mathbf{2 1}$ (5.28 $\mathrm{g}, 13.7 \mathrm{mmol})$ in dioxane (30 mL). After being stirred at room temperature overnight, the mixture was evaporated, affording a residue that was purified by gravity chromatography. Eluting with petroleum ether/ethyl acetate/ethanol ($5: 5: 0.1$) afforded 22: 55\% yield; ${ }^{1} \mathrm{H}$ NMR ($\left(\mathrm{CDCl}_{3}\right) \delta 1.19-1.49$ ($\mathrm{m}, 42$),
1.60-1.83 (m, 4), 3.01-3.32 (m, 8), 3.79-3.82 (m, 6), 4.444.59 (m, 4), 4.70 (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 6.79-6.99 $(\mathrm{m}, 6), 7.09-7.28(\mathrm{~m}, 2)$.

6-Aminohexanoic Acid\{8-[(6-aminohexanoyl)(2-meth-oxybenzyl)amino]octyl\}(2-methoxybenzyl)amide Dioxalate (6). A solution of $22(5.73 \mathrm{~g}, 7.03 \mathrm{mmol})$ in TFA (40 mL) was stirred at room temperature for 12 h . The solvent was evaporated, yielding a solid that was dissolved in water (100 mL). The obtained solution was then washed with ether ($3 \times$ 30 mL), made basic with NaOH pellets, and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. The organic phase was evaporated to give 6 (95% yield) as the free base that was transformed into the dioxalate salt as a white solid: mp 54-56 ${ }^{\circ} \mathrm{C}\left(\mathrm{EtOH}^{2} \mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}) $\delta 1.25-1.78(\mathrm{~m}, 24+4$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.25-2.39 (m, 4), 2.64-2.75 (m, 4), 3.28-3.36 $(\mathrm{m}, 4), 3.83(\mathrm{~s}, 6), 4.47-4.61(\mathrm{~m}, 4), 6.83-7.28(\mathrm{~m}, 8)$. Anal. $\left(\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{12}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-Chlorohexylamine Hydrochloride (23). A solution of 6 -amino-1-hexanol ($15.5 \mathrm{~g}, 0.13 \mathrm{~mol}$) and $\mathrm{SOCl}_{2}(43 \mathrm{~mL}, 0.59$ mol) in toluene (100 mL) was refluxed for 1 h . Removal of the solvent under reduced pressure afforded crude 23 in quantitative yield as a hygroscopic solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.44-$ 1.54 (m, 4), 1.74-1.83 (m, 4), 3.01-3.04 (m, 2), 3.55 (t, 2), 8.31 (br s, 3, exchangeable with $\mathrm{D}_{2} \mathrm{O}$).
(6-Chlorohexyl)carbamic Acid tert-Butyl Ester (24). To a solution of $23(10.3 \mathrm{~g}, 59.85 \mathrm{mmol})$ in 30 mL of water was added $E t_{3} \mathrm{~N}(6.6 \mathrm{~mL}, 89.8 \mathrm{mmol})$, and the resulting mixture was stirred at room temperature for 15 min . After dilution with THF (60 mL) di-tert-butyl dicarbonate ($14.54 \mathrm{~g}, 66.6$ mmol) was added portionwise and the reaction mixture was stirred for further 12 h . Separation between the two phases is favored by addition of EtOAc (100 mL) and water (50 mL). The dried organic phase is evaporated to dryness to give a residue that was purified by gravity chromatography. Eluting with petroleum ether/ethyl acetate (8.25:1.75) afforded 24: 57% yield; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.31-1.54$ ($\mathrm{m}, 15$), 1.75-1.83 (m, 2), 3.12-3.14 (m, 2), 3.55 (t, 2), 4.52 (br s, 1, exchangeable with $\mathrm{D}_{2} \mathrm{O}$).
\{6-[\{8-[(6-tert-Butoxycarbonylaminohexyl)(2-methoxybenzyl) amino]octyl\} (2-methoxybenzyl)amino]hexyl\}carbamic Acid tert-Butyl Ester (25). A mixture of 24 (4.9 $\mathrm{g}, 20.8 \mathrm{mmol}), 21(2 \mathrm{~g}, 5.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.87 \mathrm{~g}, 20.8 \mathrm{mmol})$, and KI ($1.41 \mathrm{~g}, 8.5 \mathrm{mmol}$) in absolute ethanol (100 mL) was refluxed for 78 h . Removal of the sol vent gave a residue that was purified by flash chromatography. Eluting with chloroform/ petroleum ether/ethanol/aqueous 30\% ammonia (6:3.4:0.6:0.01) afforded 25 as transparent oil: 13% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.23-1.50 (m, 46), 2.46 (t, 8), 3.05-3.10 (m, 4), 3.64 (s, 4), 3.82 (s, 6), 4.53 (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 6.82-6.98 (m, 4), 7.23 (t, 2), 7.42 (d, 2).

N,N-Bis(6-ami nohexyl)-N,N-bis(2-methoxybenzyl)oc-tane-1,8-diamine Tetrahydrochloride (7). A solution of $\mathbf{2 5}$ ($200 \mathrm{mg}, 0.26 \mathrm{mmol}$) in $6 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ was stirred at room temperature for 2 h . The reaction mixture was then washed with ether ($3 \times 20 \mathrm{~mL}$), made basic with NaOH pellets, and extracted with chloroform ($3 \times 20 \mathrm{~mL}$). The organic phase was evaporated to give 7 (90% yield) as the free base that was transformed into the tetrahydrochloride salt as a hygroscopic solid: ${ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}) $\delta 1.26-1.70(\mathrm{~m}, 28+4$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.44 (t, 8), 2.70 (t, 4), 3.59 (s, 4), 3.83 $(\mathrm{s}, 6), 6.83-6.98(\mathrm{~m}, 4), 7.18-7.22(\mathrm{~m}, 2), 7.41-7.45(\mathrm{~m}, 2)$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{66} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

10,19-Dimethyl-3,10,19,26-tetraazabicyclo[26.2.2]-dotriaconta-1(31),28(32),29-triene (31). A solution of 28 ($45.6 \mathrm{mg}, 0.34 \mathrm{mmol}$) in 100 mL of dry ethanol was added dropwise to a mixture of $27^{15}(130 \mathrm{mg}, 0.34 \mathrm{mmol})$ and molecular sieves ($3 \AA$) over a period of 72 h at room temperature. $\mathrm{NaBH}_{4}(29 \mathrm{mg}, 0.70 \mathrm{mmol})$ was then added, and the stirring was continued for further 12 h . Following removal of molecular sieves, the solution was made acidic with 6 N HCl (2 mL). Removal of the solvent gave a residue, which was dissolved in water (40 mL). The solution was washed with ether ($3 \times 20 \mathrm{~mL}$) to remove nonbasic materials and then was made basic with 5 N NaOH and finally extracted with
chloroform ($3 \times 20 \mathrm{~mL}$). Removal of the solvent gave a residue that was purified by chromatography. Eluting with methylene chloride/methanol/aqueous 30\% ammonia (9:1:0.1) afforded 31: 60\% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.09-1.66(\mathrm{~m}, 28+2$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $2.32(\mathrm{~s}, 6), 2.41-2.48(\mathrm{~m}, 8), 2.64(\mathrm{t}$, 4), 3.82 ($\mathrm{s}, 4$), $7.33(\mathrm{~s}, 4)$.

3,26-Bis(2-methoxybenzyl)-10,19-dimethyl-3,10,19,26-tetraazabicyclo[26.2.2]dotriaconta-1(31),28(32)-triene Tetrahydrochloride (8). A mixture of 31 ($130 \mathrm{mg}, 0.27 \mathrm{mmol}$), $\mathrm{NaCNBH}_{3}(34 \mathrm{mg}, 0.54 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{COOH}(15.4 \mathrm{~mL})$ in absolute ethanol (10 mL) was stirred for 10 min at room temperature, and then 2-methoxybenzaldehyde ($150 \mathrm{mg}, 1.1$ mmol) was added and the stirring was continued overnight. Removal of the solvent gave a residue that was purified by flash chromatography. Eluting with methylene chloride/ethanol/aqueous 30% ammonia (9.5:0.5:0.1) afforded 8 (31\% yield) as the free base that was transformed into the tetrahydrochloride salt: $\mathrm{mp} 74-76{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (free base, $\left.\mathrm{CDCl}_{3}\right) \delta 1.28-1.51(\mathrm{~m}, 28), 2.22(\mathrm{~s}, 6), 2.26-2.47(\mathrm{~m}, 12), 3.57$ (s, 4), $3.62(\mathrm{~s}, 4), 3.81(\mathrm{~s}, 6), 6.83-6.99(\mathrm{~m}, 4), 7.16-7.32(\mathrm{~m}$, 6), 7.54-7.57 (m, 2). Anal. ($\mathrm{C}_{46} \mathrm{H}_{76} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$) C, H, N.

14,23-Dimethyl-7,14,23,30-tetraazatricyclo[30.2.2.20,0]-octatriaconta-1(35),2,4,32(36),33,37-hexaene Tetrahydrochloride (12). 12 was obtained from $\mathbf{2 7}^{15}(130 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $29^{13}(71.5 \mathrm{mg}, 0.34 \mathrm{mmol})$ following the procedure described for 31 and purified by flash chromatography. Eluting with methylene chloride/ethanol/aqueous 30\% ammonia (9:1: 0.1) gave 12 as the free base that was converted into the tetrahydrochloride salt: 64% yield; $\mathrm{mp} 212-215{ }^{\circ} \mathrm{C}$ (EtOH/ $\mathrm{Et}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}) $\delta 1.28-1.50(\mathrm{~m}, 28), 1.91$ (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.21-2.33 (m, 14), 2.58 (t, 4), 3.87 (s, 4), 7.39 (d, 4), $7.60(d, 4)$. Anal. ($\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{Cl}_{4} \mathrm{~N}_{4}$) C, H, N .

7,30-Bis(2-methoxybenzyl)-14,23-dimethyl-7,14,23,30-tetraazatricyclo[30.2.2.20,0]octatriaconta-1(35),2,4,32(36),-33,37-hexaene Tetraoxalate (9). 9 was obtained from 12 (90 $\mathrm{mg}, 0.16 \mathrm{mmol}$) and 2-methoxybenzaldehyde ($98 \mathrm{mg}, 0.72$ mmol) following the procedure described for $\mathbf{8}$ and purified by flash chromatography. Eluting with methylene chloride/ethanol/aqueous 30% ammonia (9:1:0.1) gave 9 as the free base that was converted into the tetraoxalate salt: 48% yield; mp $105{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}) $\delta 1.16-1.50(\mathrm{~m}, 28), 2.16-$ 2.33 (m, 14), 2.43 (t, 4), 3.55 (s, 4), 3.68 (s, 4), 3.82 (s, 6), 6.836.87 (m. 2), 6.96 (t, 2), 7.21 (t, 2), 7.40-7.59 (m, 10). Anal. $\left(\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{18}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

15,24-Dimethyl-8,15,24,31-tetraazatricyclo[31.2.2.20,0]-nonatriaconta-1(36),3,5,33(37),34,38-hexaene (32). 32 was obtained from $\mathbf{2 7}^{15}(130 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathbf{3 0}^{\mathbf{1 4}}(76.3 \mathrm{mg}, 0.34$ mmol) following the procedure described for 31 and purified by flash chromatography. Eluting with methylene chloride/ methanol/aqueous 30% ammonia (9:1:0.1) gave 32 as the free base: 57\% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.24-1.47(\mathrm{~m}, 28), 2.01$ (br s, 2, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.23(\mathrm{~s}, 6), 2.32-2.38(\mathrm{~m}, 8)$, 2.59 (t, 4), 3.75 (s, 4), 3.93 (s, 2), 7.11-7.14 (m, 4), 7.22-7.25 ($\mathrm{m}, 4$).

8,31-Bis(2-methoxybenzyl)-15,24-dimethyl-8,15,24,31tetraazatricyclo[31.2.2.2 ${ }^{0,0}$] nonatriaconta-1(36),3,5,33-(37),34,38-hexaene Tetraoxalate (10). 10 was obtained from 32 ($110 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2-methoxybenzal dehyde (106 mg , 0.78 mmol) following the procedure described for 8 and purified by flash chromatography. Eluting with methylene chloride/ ethanol/aqueous 30\% ammonia (9.4:0.6:0.05) gave 10 as the free base that was converted into the tetraoxalate salt: 50\% yield; mp $110{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (free base, $\left.\mathrm{CDCl}_{3}\right) \delta$ 1.29-1.93 (m, 28), 2.23 (s, 6), 2.26-2.47 (m, 12), $3.59(\mathrm{~s}, 4)$, 3.63 (s, 4), $3.82(\mathrm{~s}, 6), 3.96(\mathrm{~s}, 2), 6.84-7.00(\mathrm{~m}, 4), 7.12-7.33$ (m, 10), 7.53-7.57 (m, 2). Anal. ($\mathrm{C}_{61} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{18}$) C, H, N.

14,23-Dimethyl-7,14,23,30-tetrazatricyclo[30.2.2.2 ${ }^{0,0}$]-octatriaconta-1(35),2,4,32(36),33,37-hexaene-13,24-dione (33). 33 was obtained from $26^{15}(140 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $29^{13}(72 \mathrm{mg}, 0.34 \mathrm{mmol})$ following the procedure described for 31 and purified by flash chromatography. Eluting with methylene chloride/petroleum ether/ethanol/aqueous 30\% ammonia (8:1:1:0.1) gave 33: 55% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-$
$1.55(\mathrm{~m}, 24), 1.75$ (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.17-2.23 (m, 4), 2.50-2.57 (m, 4), 2.86 (s, 6), 3.04-3.16 (m, 4), 3.823.83 (m, 4), 7.33-7.38 (m, 4), 7.52-7.57 (m, 4).

7,30-Bis(2-methoxybenzyl)-14,23-dimethyl-7,14,23,30-tetraazatricyclo[30.2.2.20,0]octatriaconta-1(35),2(37),3,5-(38),32(36),33-hexaene-13,24-dione Dihydrochloride (11). A mixture of 30 ($110 \mathrm{mg}, 0.19 \mathrm{mmol}$), 2-methoxybenzyl chloride ${ }^{16}$ ($119.5 \mathrm{mg}, 0.76 \mathrm{mmol}$), and N, N-diisopropylethyIamine ($0.13 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was refluxed for 24 h and then stirred at room temperature for further 48 h. Removal of the solvent gave a residue that was purified by chromatography. Eluting with methylene chloride/petroleum ether/ethanol/aqueous 30\% ammonia (4.5:5:0.5:0.05) afforded 11 (41% yield) as the free base that was transformed into the di hydrochloride: $\mathrm{mp} 200-205^{\circ} \mathrm{C}$ (EtOH/ether); ${ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}) $\delta 1.20-1.56(\mathrm{~m}, 24), 2.15-2.27(\mathrm{~m}, 4), 2.30-2.45$ $(\mathrm{m}, 4), 2.82-2.86(\mathrm{~m}, 6), 3.14-3.29(\mathrm{~m}, 4), 3.55-3.57(\mathrm{~m}, 4)$, 3.66-3.68 (m, 4), $3.80(\mathrm{~s}, 6), 6.83-7.58$ (m, 16). Anal. ($\mathrm{C}_{52} \mathrm{H}_{74}{ }^{-}$ $\left.\mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
10,19-Bis-(2-methoxybenzyl)-3,10,19,26-tetraazabicyclo-[26.2.2]dotriaconta-1(31),28(32),29-triene-9,20-dione Dihydrochloride (13). 13 was obtained from $6(480 \mathrm{mg}, 0.88$ $\mathrm{mmol})$ and 28 ($118 \mathrm{mg}, 0.88 \mathrm{mmol}$) following the procedure described for 31 and purified by flash chromatography. Eluting with methylenechloride/petroleum ether/ethanol/aqueous 30\% ammonia (8:1:1:0.1) gave 13 as the free base that was converted into the di hydrochloride salt: 38% yield; $\mathrm{mp} 185-$ $187{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}, $\delta 1.23-1.45$ $\left(\mathrm{m}, 24+2\right.$ exchangeable $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.36-2.40(\mathrm{~m}, 8), 2.57(\mathrm{t}, 4)$, 3.55 (t, 4), 3.77 (s, 4), 3.79 (s, 6), 6.81-6.93 (m, 4), 7.16-7.27 (m, 6), 7.39-7.41 (m, 2). MALDI-MS calcd for $\mathrm{C}_{44} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{4}$ $713.49(\mathrm{M} \mathrm{+} \mathrm{H})^{+}$, found 713.51. Anal. $\left(\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$, N.

14,23-Bis(2-methoxybenzyl)-7,14,23,30-tetraazatricyclo[30.2.2.2 ${ }^{0,0}$]octatriaconta-1(35),2,4,32(36),33,37-hexaene-13,24-dione Dihydrochloride (14). 14 was obtained from 6 ($210 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $29^{13}(71.5 \mathrm{mg}, 0.34 \mathrm{mmol}$) following the procedure described for $\mathbf{3 1}$ and purified by flash chromatography. Eluting with methylene chloride/petroleum ether/ ethanol/aqueous 30\% ammonia (8:1:1:0.1) gave 14 as the free base that was converted into the dihydrochloride salt: 56\% yield; $\mathrm{mp} 280-285^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right.$); ${ }^{1} \mathrm{H}$ NMR (free base, CDCl_{3}) $\delta 1.04-1.57\left(\mathrm{~m}, 24+2\right.$ exchangeable $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.24-2.31(\mathrm{~m}, 4)$, 2.39-2.69 (m, 4), 3.22-3.30 (m, 4), 3.79-3.84 (m, 10), 4.434.57 (m, 4), 6.83-7.56 (m, 16). MALDI-MS calcd for $\mathrm{C}_{50} \mathrm{H}_{69} \mathrm{~N}_{4} \mathrm{O}_{4}$ $789.52(\mathrm{M}+\mathrm{H})^{+}$, found 789.62. Anal. $\left(\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$, N.

15,24-Bis(2-methoxybenzyl)-8,15,24,31-tetraazatricyclo[31.2.2.2 ${ }^{0,0}$]nonatriaconta- $1(36), 3,5,33(37), 34,38$-hexaene-14,25-dione Dihydrochloride (15). 15 was obtained from 6 ($230 \mathrm{mg}, 0.375 \mathrm{mmol}$) and $\mathbf{3 0}{ }^{\mathbf{1 4}}(84 \mathrm{mg}, 0.375 \mathrm{mmol}$) following the procedure described for 31 and purified by flash chromatography. Eluting with methylene chloride/petroleum ether/ ethanol/aqueous 30% ammonia (8:1:1:0.08) gave 15 as the free base that was converted into the dihydrochloride salt: 49\% yield; $\mathrm{mp} 121{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1 \mathrm{H}}$ NMR (free base, CDCl_{3}) δ $1.23-1.58(\mathrm{~m}, 24), 2.10$ (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.22$2.40(\mathrm{~m}, 4), 2.55-2.68(\mathrm{~m}, 4), 3.21(\mathrm{t}, 2), 3.32(\mathrm{t}, 2), 3.76-3.82$ (m, 10), $3.95(\mathrm{~s}, 2), 4.45(\mathrm{~s}, 2), 4.59(\mathrm{~s}, 2), 6.84-7.27(\mathrm{~m}, 16)$. MALDI-MS calcd for $\mathrm{C}_{51} \mathrm{H}_{71} \mathrm{~N}_{4} \mathrm{O}_{4} 803.54(\mathrm{M}+\mathrm{H})^{+}$, found 803.59. Anal. ($\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$) C, H, N.

18,27-Di(2-metossifenil)-11,18,27,34-tetraazatetracyclo[34.2.2.2 ${ }^{2,5} .2^{6,9}$]tetratetraconta-1(38),2,4,6,8,36,39,41,43-nonaene-17,28-dione Dihydrochloride (16). 16 was obtained from 6 ($171 \mathrm{mg}, 0.28 \mathrm{mmol}$) and $34^{17}(80 \mathrm{mg}, 0.28 \mathrm{mmol})$ following the procedure described for $\mathbf{3 1}$ and purified by flash chromatography. In this case, the aldehyde was dissol ved in 150 mL of CHCl_{3}. Eluting with methylene chloride/petroleum ether/ethanol/aqueous 30% ammonia (8:1:1:0.05) gave 16 as the free base that was converted into the dihydrochloride salt: 22% yield; mp $185-187{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH}^{2} \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, free base) $\delta 1.26-1.46(\mathrm{~m}, 24), 2.01$ (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.29-2.33 (m, 4), 2.49-2.63 (m, 4), 3.08-3.31
(m, 4), 3.78-3.84 (m, 10), 4.42-4.58 (m, 4), 6.86-7.60 (m, 20). Anal. $\left(\mathrm{C}_{56} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

14,23-B is(2-methoxybenzyl)-7,30-dimethyl-7,14,23,30-tetraazatricyclo[30.2.2.20,0]octatriaconta-1(35),2,4,32(36), 33,37-hexaene-13,24-dione Dihydrochloride (17). Formic acid ($96 \%, 1.4 \mathrm{~mL}, 37 \mathrm{mmol}$) was added dropwise to 14 (200 $\mathrm{mg}, 0.25 \mathrm{mmol}$), and then 40\% formaldehyde ($1.2 \mathrm{~mL}, 17.4$ mmol) was added to the resulting mixture, which was heated at $100^{\circ} \mathrm{C}$ for 18 h , cooled $\left(5^{\circ} \mathrm{C}\right)$, made basi c with 40% aqueous NaOH , and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. Removal of dried solvents gave a residue that was purified by gravity chromatography. Eluting with methylene chloride/petroleum ether/ethanol/aqueous 30\% ammonia (8:1:1:0.1) gave 17 as the free base that was converted into the dihydrochloride salt: 30\% yield; mp 205-215 ${ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (free base, CDCl_{3}) $\delta 1.12-1.32(\mathrm{~m}, 12), 1.32-1.56(\mathrm{~m}, 12), 2.16-2.23(\mathrm{~m}, 14)$, 2.40-2.42 (m, 4), 3.14-3.30 (m, 4), $3.55(\mathrm{~s}, 4), 3.82(\mathrm{~s}, 6), 6.85-$ 7.59 (m, 16). Anal. $\left(\mathrm{C}_{52} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

10,19-B is(2-methoxybenzyl)-3,10,19,26-tetraazabicyclo-[26.2.2]dotriaconta-1(31),28(32),29-triene Tetrahydrochloride (18). 18 was obtained from 7 ($200 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathbf{2 8}$ ($46.6 \mathrm{mg}, 0.34 \mathrm{mmol}$) following the procedure described for 31 and purified by gravity chromatography. Eluting with methanol/aqueous 30\% ammonia (10:0.1) gave 18 as the free base that was converted into the tetrahydrochloride salt: 37\% yield; $\mathrm{mp} 80-84^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}$ (free base, CDCl_{3}) $\delta 1.23-1.45(\mathrm{~m}, 28), 1.75$ (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.36-2.42 (m, 8), 2.55-2.60 (m, 4), $3.55(\mathrm{~s}, 4), 3.77(\mathrm{~s}, 4), 3.80$ ($\mathrm{s}, 6$), 6.81-6.93 (m, 4), 7.16-7.27 (m, 6), $7.40(\mathrm{~d}, 2)$. Anal. $\left(\mathrm{C}_{44} \mathrm{H}_{72} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

14,23-Bis(2-methoxybenzyl)-7,14,23,30-tetraazatricyclo-[30.2.2.20,0]octatriaconta-1(35),2,4,32(36),33,37-hexaene Tetrahydrochloride (19). 19 was obtained from 7 ($260 \mathrm{mg}, 0.44$ mmol) and 29^{13} ($93 \mathrm{mg}, 0.44 \mathrm{mmol}$) following the procedure described for 31 and purified by flash chromatography. Eluting with methylenechloride/petroleum ether/ethanol/aqueous 30\% ammonia (8:1:1:0.1) gave 19 as the free base that was converted into the tetrahydrochloride salt: 40\% yield; mp 214$218{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (free base, $\left.\mathrm{CDCl}_{3}\right) \delta 1.18-1.50$ ($\mathrm{m}, 28$), 1.86 (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 2.37 ($\mathrm{t}, 8$), 2.52 (t, 4), 3.54 (s, 4), 3.78 (s, 6), 3.83 (s, 4), 6.82 (d, 2), $6.90(\mathrm{t}, 2)$, $7.18(\mathrm{t}, 2), 7.35-7.38(\mathrm{~m}, 6), 7.57(\mathrm{~d}, 4)$. MALDI-MS calcd for $\mathrm{C}_{50} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{2} 761.51(\mathrm{M}+\mathrm{H})^{+}$, found 761.57. Anal. $\left(\mathrm{C}_{50} \mathrm{H}_{76}{ }^{-}\right.$ $\left.\mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

15,24-Bis(2-methoxybenzyl)-8,15,24,31-tetraazatricyclo[31.2.2.20,0] nonatriaconta-1(36),3,5,33(37),34,38-hexaene Tetrahydrochloride (20). 20 was obtained from 7 (200 mg , $0.34 \mathrm{mmol})$ and $30^{14}(76 \mathrm{mg}, 0.34 \mathrm{mmol})$ following the procedure described for 31 and purified by flash chromatography. Eluting with methanol/aqueous 30\% ammonia (10:0.1) gave 20 as the free base that was converted into the tetrahydrochloride salt as a hygroscopic solid: 38\% yield; ${ }^{1} \mathrm{H}$ NMR (free base, $\left.\mathrm{CDCl}_{3}\right) \delta 1.25-1.52(\mathrm{~m}, 28), 1.72$ (br s, 2, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $2.24(\mathrm{t}, 8), 2.59(\mathrm{t}, 4), 3.58(\mathrm{~s}, 4), 3.77(\mathrm{~s}, 4)$, $3.82(\mathrm{~s}, 6), 3.97(\mathrm{~s}, 2), 6.82-6.96(\mathrm{~m}, 4), 7.13-7.27(\mathrm{~m}, 10)$, 7.41-7.44 (m, 2). Anal. ($\mathrm{C}_{51} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$) C, H, N.

Biology. Functional Antagonism. Male guinea pigs ($200-300 \mathrm{~g}$) and frogs ($10-20 \mathrm{~g}$) were sacrificed by cervical dislocation. The organs required were set up rapidly under 1 g of tension in 20 mL organ baths containing physiological salt solution (PSS) kept at an appropriate temperature (see below) and aerated with $5 \% \mathrm{CO}_{2} / 95 \% \mathrm{O}_{2}$. Concentration-response curves were constructed by cumulative addition of the reference agonist. The concentration of agonist in the organ bath was increased approximately 3-fold at each step, with each addition being made only after the response to the previous addition had attained a maximal level and remained steady. Contractions were recorded by means of a force displacement transducer connected to a MacLab system PowerLab/800. In all cases, parallel experiments in which tissues did not receive any antagonist were run in order to check for variations in sensitivity.

Guinea Pig Ileum Longitudinal Muscle. The 2 cm long portions of terminal ileum were taken at about 5 cm from the
ileo-caecal junction. The tissue was cleaned, and the ileum longitudinal muscle was separated from the underlying circular muscle and set up at $37{ }^{\circ} \mathrm{C}$ in organ baths containing PSS of the following composition (mM): $\mathrm{NaCl}, 118 ; \mathrm{KCl}, 4.7$; $\mathrm{CaCl}_{2}, 2.52 ; \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 1.18 ; \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.18 ; \mathrm{NaHCO}_{3}, 23.8$; glucose, 11.7. Tension changes were recorded isotonically. Tissues were allowed to equilibrate for at least 30 min , during which time the bathing solution was changed every 10 min . Concentration-response curves to arecaidine propargyl ester (APE) ($0.01-0.5 \mu \mathrm{M}$) were obtained at 30 min intervals, the first one being discarded and the second one taken as the control. Following incubation with the antagonist for 60 min , a new concentration-response curve to the agonist was obtained.

Guinea Pig Left Atria. The guinea pig heart was rapidly removed, and right and left atria were separated out. The left atria were mounted at $30^{\circ} \mathrm{C}$ in PSS of the same composition used for the ileum. Tissues were stimulated through platinum electrodes by square-wave pulses ($1 \mathrm{~ms}, 1 \mathrm{~Hz}, 5-10 \mathrm{~V}$) (Tetra Stimulus, N. Zagnoni). Inotropic activity was recorded iso metrically. Tissues were equilibrated for 2 h , and cumulative concentration-response curves to APE ($0.01-1 \mu \mathrm{M}$) were constructed. Following incubation with the antagonist for 60 min, a new concentration-response curve to APE was obtained.

Frog Rectus Abdominis Muscle. The rectus abdominis muscle of frogs was set up at room temperature in Clark frog Ringer solution of the following composition (mM): $\mathrm{NaCl}, 111$; $\mathrm{KCl}, 1.88 ; \mathrm{CaCl}_{2}, 1.08 ; \mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.08 ; \mathrm{NaHCO}_{3}, 2.38$; glucose, 11.1. The tissues were equilibrated for 60 min . Two cumulative concentration-response curves to carbachol ($1-100 \mu \mathrm{M}$) were constructed at 1 h intervals, the first one being discarded and the second one taken as the control. Following incubation with the antagonist for 60 min , a new concentration-response curve to the agonist was obtained.

Fluorescence Titration. nAChR-rich membranes were prepared from frozen Torpedo californica electric organ as described earlier. ${ }^{25}$ All fluorescence spectra were recorded using an Aminco Bowman spectrometer series 2 (Rochester). For fluorescence titration experiments, aliquots of competing ligand were added stepwise to a solution containing nAChRrich membranes ($1 \mu \mathrm{M}$ receptor concentration), ethidium (7 $\mu \mathrm{M}$), and carbachol (1 mM) in $50 \mathrm{mM} \mathrm{NaPi}, \mathrm{pH} 7.4$. Ethidium fluorescence was measured by employing an excitation wavelength of 480 nm (slit widths $4 \mathrm{~nm} / 4 \mathrm{~nm}$) while monitoring the emission from 540 to 740 nm .

Inhibition of Acetylcholinesterase. AChE ($0.5 \mathrm{UI} / \mathrm{mg}$) derived from human erythrocytes was purchased from Sigma Chemical (Italy). Buffer components and other chemicals were of the highest purity commercially available. The method of Ellman et al. was followed. ${ }^{21}$ A 0.037 M acetylthiocolineiodide solution was prepared in water, 0.01 M 5,5'-dithiobis(2nitrobenzoic acid) (DTNB, Ellman's reagent) was dissol ved in pH 7.0 phosphate buffer, and $0.15 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaHCO}_{3}$ was added. AChE solution was prepared by dissolving 20 units in 5 mL of 0.2% aqueous gelatine with sonication at $35{ }^{\circ} \mathrm{C}$. A 1:1 dilution with water was performed before use to get the enzyme activity between 0.13 and $0.100 \mathrm{AU} / \mathrm{min}$. Stock solutions of the test compounds (1 mM) were prepared in water, as well as caproctamine (3) reference stock solution. The assay solutions were prepared by diluting the stock solutions in water. Five different concentrations of each compound were used in order to obtain inhibition of AChE activity between 20% and 80%. The assay solution consisted of a 0.1 M phosphate buffer, pH 8.0, with the addition of $340 \mu \mathrm{M}$ DTNB, $0.035 \mathrm{UI} / \mathrm{mL}$ AChE, and $550 \mu \mathrm{M}$ acetylthiocoline iodide. The final assay volume was 1 mL . Test compounds were added to the assay solution and preincubated with the enzyme for 20 min , the addition of substrate following. Initial rate assays were performed at $37^{\circ} \mathrm{C}$ with a J asco U videc-610 double-beam spectrophotometer; the rate of increase in the absorbance at 412 nm was followed for 5 min . Assays were done with a blank containing all components except AChE in order to account for nonenzymatic reaction. The reaction rates were compared,
and the percent inhibition due to the presence of test compounds was calculated. Each concentration was analyzed in triplicate.

Data Analysis. The percent inhibition of AChE activity due to the presence of increasing test compound concentration was calculated by the following expression,

$$
\frac{100-v_{i}}{v_{o}} \times 100
$$

where v_{i} is the rate cal culated in the presence of inhibitor and v_{0} is the enzyme activity. Inhibition curves were obtained for each compound by plotting the percent inhibition versus the logarithm of the inhibitor concentration in the assay solution. The linear regression parameters were determined for each curve, and the IC_{50} was extrapolated.

Antagonism of mAChRs, expressed as $\mathrm{pK}_{\text {в }}$ values, was estimated according to the equation $\mathrm{pK}_{\mathrm{B}}=\log (\mathrm{DR}-1)-\log$ [antagonist], where DR is the ratio between individual EC_{50} values in the presence and in the absence of antagonists. ${ }^{20}$ The potency of the agonist, i.e., the concentration resulting in 50\% of the maximum response (EC_{50}), was estimated graphically from the individual concentration-response curves after checking for parallelism of the curves. The newly synthesized compounds were tested at only one concentration ($5 \mu \mathrm{M}$) in triplicate.

Antagonism of nAChRs was estimated by determining the concentration of the noncompetitive antagonist, which inhibited 50% of the maximum response to the agonist. Three different antagonist concentrations were used, and each concentration was tested at least four times.

Data were analyzed using a pharmacological computer program. ${ }^{26}$

Dissociation constants ($\mathrm{K}_{\text {app }}$ values) for nonfluorescent competing ligands were derived from analysis of their capacity to displace the fluorescent ligand, ethidium. For calculations of $\mathrm{K}_{\text {app }}$ values, fluorescence data were plotted according to a logarithmic formula described by Herz et al. ${ }^{24}$

Acknowledgment. Grants from the University of Bologna, the European Community (Grant BMH4-CT97-2395), MIUR, CNR (Grant 99.01100.CT03), the Deutsche Forschungsgemeinschaft (Grant DFG, Sfb 449), and the Fonds der Chemischen Industrie supported this research.

References

(1) For part 2 , see ref 12.
(2) Melchiorre, C. Polymethylene tetraamines: a novel class of cardioselective M2-antagonists. Med. Res. Rev. 1990, 10, 327349.
(3) Melchiorre, C.; Minarini, A.; Angeli, P.; Giardinà, D.; Gulini, U.; Quaglia, W. Polymethylene tetraamines as muscarinic receptor probes. Trends Pharmacol. Sci., Suppl. 1989, 55-59.
(4) Melchiorre, C.; Recanatini, M.; Bolognesi, M. L.; Filippi, P.; Minarini, A. Polyamines: a case of multiple yet specific receptor recognition. Curr. Top. Med. Chem. 1993, 1, 43-65.
(5) Bolognesi, M. L.; Minarini, A.; Budriesi, R.; Cacciaguerra, S.; Chiarini, A.; Spampinato, S.; Tumiatti, V.; Melchiorre, C. Universal template approach to drug design: polyamines as selective muscarinic receptor antagonists. J. Med. Chem. 1998, 41, 4150-4160.
(6) Melchiorre, C.; Angeli, P.; Brasili, L.; Giardinà, D.; Pigini, M.; Quaglia, W. Polyamines: A possible "passe-partout" for receptor characterization. Actual. Chim. Ther. 1988, 149-168.
(7) Melchiorre, C.; Yong, M. S.; Benfey, B. G.; Belleau, B. M olecular properties of the adrenergic al pha receptor. 2. Optimum covalent inhibition by two different prototypes of polyamine disulfides. J. Med. Chem. 1978, 21, 1126-1132.
(8) Rosini, M.; Budriesi, R.; Bixel, M. G.; Bolognesi, M. L.; Chiarini, A.; Hucho, F.; Krogsgaard-Larsen, P.; Mellor, I. R.; Minarini, A.; Tumiatti, V.; Usherwood, P. N.; Melchiorre, C. Design, synthesis, and biological evaluation of symmetrically and unsymmetrically substituted methoctramine-related polyamines as muscular nicotinic receptor noncompetitive antagonists. J. Med. Chem. 1999, 42, 5212-5223.
(9) Melchiorre, C.; Romualdi, P.; Bolognesi, M. L.; Donatini, A.; Ferri, S. Binding profile of benextramine at neuropeptide Y receptor subtypes in rat brain areas. Eur. J. Pharmacol. 1994, 265, 93-98.
(10) Melchiorre, C.; Andrisano, V.; Bolognesi, M. L.; Budriesi, R.; Cavalli, A.; Cavrini, V.; Rosini, M.; Tumiatti, V.; Recanatini, M. Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer's disease. J. Med. Chem. 1998, 41, 4186-4189.
(11) Melchiorre, C.; Cassinelli, A.; Quaglia, W. Differential blockade of muscarinic receptor subtypes by polymethylene tetraamines. Novel class of selective antagonists of cardiac M-2 muscarinic receptors. J. Med. Chem. 1987, 30, 201-204.
(12) Rosini, M.; Bixel, M. G.; Marucci, G.; Budriesi, R.; Krauss, M.; Bolognesi, M. L.; Minarini, A.; Tumiatti, V.; Hucho, F.; Melchiorre, C. Structure-activity relationships of methoctraminerelated polyamines as muscular nicotinic receptor noncompetitive antagonists. 2. Role of polymethylene chain lengths separating amine functions and of substituents on the terminal nitrogen atoms. J. Med. Chem. 2002, 45, 1860-1878.
(13) Helms, A.; Heiler, D.; McLendon, G. Electron transfer in bisporphyrin donor-acceptor compounds with polyphenylene spacers shows a weak distance dependence. J. Am. Chem. Soc. 1992, 114, 6227-6238.
(14) J azwinski, J .; Lehn, J .-M.; M éric, R.; Vigneron, J .-P.; Cesario, M.; Guilhem, J .; Pascard, C. Polyaza-macrocycles of cyclophane type: synthesis, structure of a chloroform inclusion complex and anion binding. Tetrahedron Lett. 1987, 28, 3489-3492.
(15) Melchiorre, C.; Quaglia, W.; Picchio, M. T.; Giardinà, D.; Brasili, L.; Angeli, P. Structure-activity relationships among methoc-tramine-related polymethylene tetraamines. Chain-length and substituent effects on M-2 muscarinic receptor blocking activity. J. Med. Chem. 1989, 32, 79-84.
(16) Grice, R.; Owen, L. N. Cytotoxix compounds. IV. Substituted benzyl halides. J. Chem. Soc. 1963, 1947-1954.
(17) Wulff, G.; Lauer, M.; Disse, B. On the synthesis of monomers capable for the introduction of amino groups into polymers in a defined distance. Chem. Ber. 1979, 112, 2854-2865.
(18) Melchiorre, C.; Bolognesi, M. L.; Chiarini, A.; Minarini, A.; Spampinato, S. Synthesis and biological activity of some meth-octramine-related tetraamines bearing a 11-acetyl-5,11-dihydro-6H-pyrido[2,3-b][1,4]-benzodiazepin-6-one moiety as antimuscarinics: a second generation of highly selective M_{2} muscarinic receptor antagonists. J. Med. Chem. 1993, 36, 3734-3737.
(19) Minarini, A.; Bolognesi, M. L.; Budriesi, R.; Canossa, M.; Chiarini, A.; Spampinato, S.; Melchiorre, C. Design, synthesis, and biological activity of methoctramine-related tetraamines bearing an 11-acetyl-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzo-diazepin-6-one moiety: structural requirements for optimum occupancy of muscarinic receptor subtypes as revealed by symmetrical and unsymmetrical polyamines. J. Med. Chem. 1994, 37, 3363-3372.
(20) Van Rossum, J. M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch. Int. Pharmacodyn. Ther. 1963, 143, 299-330.
(21) Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M. A new rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88-95.
(22) Teodori, E.; Gualtieri, F.; Angeli, P.; Brasili, L.; Giannella, M.; Pigini, M. Resolution, absolute configuration, and cholinergic enantiosel ectivity of (+)- and (-)-cis-2-methyl-5-[(dimethylami-no)methyl]-1,3-oxathiolane methiodide. J. Med. Chem. 1986, 29, 1610-1615.
(23) Bixel, M. G.; Krauss, M.; Liu, Y.; Bolognesi, M. L.; Rosini, M.; Mellor, I. S.; Usherwood, P. N.; Melchiorre, C.; Nakanishi, K.; Hucho, F. Structure-activity relationship and site of binding of polyamine derivatives at the nicotinic acetylcholine receptor. Eur. J. Biochem. 2000, 267, 110-120.
(24) Herz, J. M.; J ohnson, D. A.; Taylor, P. Interaction of noncompetitive inhibitors with the acetylchol ine receptor. The site specificity and spectroscopic properties of ethidium binding. J. Biol. Chem. 1987, 262, 7238-7247.
(25) Schiebler, W.; Lauffer, L.; Hucho, F. Acetylcholine receptor enriched membranes: acetylcholine binding and excitability after reduction in vivo. FEBS Lett. 1977, 81, 39-41.
(26) Motulsky, H. J. Analyzing Data with GraphPad Prism; GraphPad Software Inc.: San Diego, CA, 1999.
J M 020835F

[^0]: * To whom correspondence should be addressed. Phone: +39-0512099706. Fax: +39-051-2099734. E-mail: camelch@kaiser.alma.unibo.it.
 † University of Bologna.
 \# Freie Universität Berlin
 § University of Camerino.

